We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere.
展开▼
机译:我们评估了对流层臭氧的瞬时辐射强迫(IRF),该对流层臭氧是通过四种最先进的全球化学气候模式(AM2-Chem,CAM-Chem,ECHAM5-MOZ和GISS-PUCCINI)针对从美国宇航局对流层发射光谱仪(TES)在2006年8月。IRF是通过对TES和模型预测的臭氧之间的差异应用观察约束的瞬时辐射强迫核(IRFK)来计算的。 IRFK代表在全天条件下,长波辐射对臭氧垂直和空间分布的敏感性。通过这项技术,我们发现,由于对流层中低层区域的臭氧差异,热带和中纬度内大区域的总对流层IRF偏差从-0.4到+ 0.7 W / m(2),这主要是由于对流层中的持续偏差增加了对流层上部-平流层下部区域。模型的区域平均偏差也从-30到+ 50 mW / m(2)。但是,在整个对流层中,整体对流层总IRF偏差小于0.2 W / m(2)。
展开▼